

V05370-01 Data

4S Protector with Fuel Gauge and Cell Balancing

Absolute Maximum Ratings	Min.	Тур.	Max.	Unit
Supply Voltage (B+ to B- or P+ to P-)	-0.3		18.0	V
Operating Temperature	-30		60	°C
Storage Temperature	-40		85	°C
Operating Parameters (at TA = 25°C)				
Quiescent Current (at VCELL = 3.3V)		10		mA
Quiescent Current (sleep mode)			400	μΑ
Continuous Load			20	Α
Overvoltage				
Cell Overvoltage ¹	3.725	3.750	3.775	V
Cell Overvoltage Delay Time ¹		10		S
Cell Overvoltage Release ¹		3.300		V
Under Voltage				
Cell Under Voltage ¹	2.475	2.500	2.525	V
Cell Under Voltage Delay Time ¹		10		S
Cell Under Voltage Release ¹		3.000		V
Overcurrent and Short Circuit				
Discharge Overcurrent Trip ¹	21.5	22.0	22.5	Α
Discharge Overcurrent Trip Delay Time ¹		5		S
Discharge Overcurrent Release ¹ (remove load)		8		S
Short Circuit Current Trip ^{1,2}		200		Α
Short Circuit Current Trip Delay Time ¹		915		μs
Short Circuit Current Release ¹ (remove load)		5		S
Charge Overcurrent Trip ¹	21.5	22.0	22.5	Α
Charge Overcurrent Trip Delay Time ¹		5		S
Over Temperature				
Charge Over Temperature Trip ¹		65		°C
Charge Over Temperature Release ¹ (hysteresis)		15		°C
Discharge Over Temperature Trip ¹		75		°C
Discharge Over Temperature Release ¹		10		°C
(hysteresis)				
Under Temperature				
Charge Under Temperature Trip ¹		-5		°C
Discharge Under Temperature Trip ¹		-25		°C
Under Temperature Release ¹ (hysteresis)		10		°C
Fuel Gauge SMBus Rev 1.1				
Calibrated Accuracy		1		%
Clock Frequency	10		100	kHz
Natara				

Notes:

- ¹ Parameter is factory-programmable to suit customer application.
- ² Validated using 4S10P-connected Heater 26650 3200 mA/h cells. Performance may vary if other cells are used.

Theory of Operation

The V05370-01 is a 4S protection and fuel gauging solution rated to 20A continuous operation in free air.

Overvoltage, under voltage, and overcurrent trips are managed via a TI BQ40Z50-R1 Li-Ion Battery Pack Manager IC driving high-side N-Channel MOSFETs.

Fuel gauging is also provided by the TI BQ40Z50-R1 device, which is a Coulomb metric counter employing Tl's Impedance TrackTM technology, thereby eliminating inservice calibration.

Fuel gauge data is fed to the on-board microcontroller (MCU), which transfers the data to the host upon request.

Communication to the host is via SMBus Rev 1.1.

The TI BQ40Z50-R1 device also controls passive cell balancing, which is only performed when charging or at rest (no charge/discharge current).

Thermal monitoring is supported by providing four external 10 k Ω NTC thermistors, which connect to the fuel gauge.

To prevent damaging the product, connections must be made in the following sequence (reverse the sequence when disconnecting):

- 1) B-
- 2) J4 (before individual cell connections)
- 3) Battery Stack Negative Voltage Sense
- 4) Cell 1 Voltage Sense
- 5) Cell 2 Voltage Sense
- 6) Cell 3 Voltage Sense
- 7) Cell 4 Voltage Sense
- 8) B+

Teviot Technology Inc.

40 Great Gulf Drive unit 37, Concord, ON L4K 0K7 Canada www.teviottechnology.com

Figure 1 - Simplified Block Diagram:

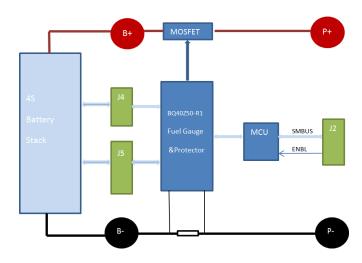


Figure 2 - Mechanical Details:

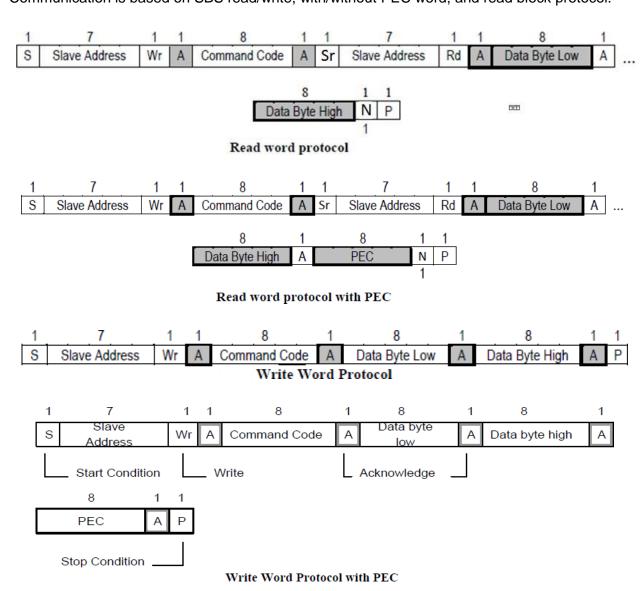
Table 1 - Connectivity:

Connector	Mating Information	Pin #	Function
J2	Molex 0050579404 (housing), 0016020069	1	SDA
	(contacts)	2	SCL
		3	ENBL
		4	P-
B+	M6, 7mm depth		B+
B-	M6, 7mm depth		B-
P+	M6, 7mm depth		P+
P-	M6, 7mm depth		P-
J4	Molex 0874390500 (housing), 0874210000 (contacts)	1	Battery Stack Negative Voltage Sense
		2	Cell 1 Voltage Sense
		3	Cell 2 Voltage Sense
		4	Cell 3 Voltage Sense
		5	Cell 4 Voltage Sense
J5	Molex 51021-0800 (housing), 50079-8000	1	External Thermistor 1 Sense
	(contacts)	2	External Thermistor 1 Ground
		3	External Thermistor 2 Sense
		4	External Thermistor 2 Ground
		5	External Thermistor 3 Sense
		6	External Thermistor 3 Ground
		7	External Thermistor 4 Sense
		8	External Thermistor 4 Ground

Note: J5 pins 2, 4, 6, and 8 are internally connected to ground

TEVIOT

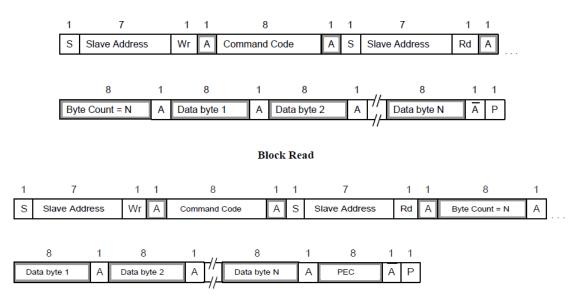
V05370V0 Data



External Communication:

The BMS operates as a slave device when communicating with external devices.

<u>Battery Pack Slave Address:</u> The 7-bit device address (ADDR) is the most significant 7 bits of the hex address and is 0001011 (fixed). The 8-bit device address is therefore 0x16 for write, and 0x17 for read.


Communication is based on SBS read/write, with/without PEC word, and read block protocol.

Block Read with PEC

Table 2 - External SBS Commands:

CMD	D Mode Name		Format	Unit	
0x01	Read Word	OperationStatus ¹	Unsigned		
0x03	Read Word	Battery Mode	Unsigned		
0x08	Read Word	Temperature	Unsigned	0.1 °K	
0X09	Read Word	Voltage	Unsigned	mV	
0x0a	Read Word	Instantaneous Current	Signed	mA	
0x0b	Read Word	Average Current	Signed	mA	
0x0c	Read Word	Max Error	Unsigned	%	
0x0d	Read Word	RSOC	Unsigned	%	
0x0f	Read Word	Remain Capacity	Unsigned	mA/h	
0x10	Read Word	Full Charge Capacity	Unsigned	mA/h	
0x12	Read Word	Average Time to Empty	Unsigned	Min	
0X13	Read Word	Average Time to Full	Unsigned	Min	
0x15	Read Word	Charging Voltage	Unsigned	mV	
0x16	Read Word	Battery Status	Unsigned		
0x17	Read Word	Cycle Count	Unsigned	Cycles	
0x18	Read Word	Design Capacity	Unsigned	mA/h	
0x19	Read Word	Design Voltage	Unsigned	mV	
0x1b	Read Word	Manufacturer Date	Unsigned		
0x1c	Read Word	Serial Number	Unsigned		
0x20	Read Block	Manufacturer Name		ASCII	
0x21	Read Block	Device Name		ASCII	
0x3c	Read Word	Cell Voltage 4	Unsigned	mV	
0x3d	Read Word	Cell Voltage 3	Unsigned	mV	
0x3e	Read Word	Cell Voltage 2	Unsigned	mV	
0x3f	Read Word	Cell Voltage 1	Unsigned	mV	
0x51	Read Word	Safety Status	Unsigned		
0x53	Read Word	PFStatus	Unsigned		
0x88	Write Word (with PEC)	Shut Down ²	Unsigned		
0x89	Write Word (with PEC)	Seal ²	Unsigned		
0x90	Write Word (with PEC)	Lifetime ³	Unsigned		
0x91	Write Word (with PEC)	PFEnable ³	Unsigned		
0x70	Read Word	Check Seal Mode ⁴	Unsigned		
0x71	Read Word	Check Lifetime and PFEnable Status ⁵	Unsigned		
			- J		

Notes:

⁴ To check the Seal Mode, using command 0x70 to Read SMB Word, the reading result is the same as Bq40z50 Operation Status A. Bit definition is shown below. The user can determine whether it is sealed or not by checking the condition of the SEC1 and SEC0 bits. If both SEC1 and SEC0 are set, it is sealed.

¹ The word returns the lowest two bytes of 0x54 Operation Status of bq40z50 SBS command.

² The word can be any value, but needs to be with PEC.

³ The word can be any value, but needs to be with PEC. If the function is enabled, it toggles to disabled when the word is written. The function toggles back to enable the next time that the word is written.

⁵ To check, using command 0x71 to Read SMB Word, the reading result is the same as bq40z50 Manufacturing Status. Bit definition is shown below. The user can determine whether it is enabled or disabled.

15	14	13	12	11	10	9	8
CAL_TEST	LT_TEST	RSVD	RS∀D	RS∀D	RS√D	LED_EN	FUSE_EN
7	6	5	4	3	2	1	0
BBR_EN	PF_EN	LF_EN	FET_EN	GAUGE_EN	DSG_EN	CHG_EN	PCHG_EN

Document Revision History:

Revision	Date	Reason/Description of Changes	Modified By
1	17 Jan 2021	Initial Release	KG

Important Notice:

The information contained herein is believed to be reliable; however, Teviot Technology Inc. makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Teviot Technology Inc. products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND TEVIOT TECHNOLOGY INC. HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, AND USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Teviot Technology Inc. products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Copyright 2021 © Teviot Technology Inc. | Teviot Technology Inc. is a registered trademark of Teviot Technology Inc.